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Towards a quantitative phase-field model of two-phase solidification

R. Folch* and M. Plapp
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~Received 20 March 2003; published 30 July 2003!

We construct a diffuse-interface model of two-phase solidification that quantitatively reproduces the classic
free boundary problem on solid-liquid interfaces in the thin-interface limit. Convergence tests and comparisons
with boundary integral simulations of eutectic growth show good accuracy for steady-state lamellae, but the
results for limit cycles depend on the interface thickness through the trijunction behavior. This raises the
fundamental issue of diffuse multiple-junction dynamics.
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Complex microstructures that arise during alloy solid
cation are a classical example of pattern formation@1# and
influence the mechanical properties of the finished mate
@2#. A long-standing challenge is to understand the patt
selection starting from the basic ingredients: bulk transp
solute and heat rejection on the solidification front, and
front’s local response. Simple as it may seem, this f
boundary problem~FBP! accurately describes many expe
mental features, but has few analytic solutions, so that
merical modeling is mandatory.

The phase-field method@3# has become the method o
choice for simulating solidification fronts@4#, and more gen-
erally for tackling FBPs and interfacial pattern formatio
phenomena, e.g., in materials science@5# and fluid flow @6#.
Its main advantage~essential in three dimensions! is that it
circumvents front tracking by usingphase fieldsto locate the
fronts. These fields interpolate between different cons
values in each bulk phase through interfacial regions
thicknessW. The model is then required to reproduce t
FBP in the sharp-interface limit, in which the extra leng
scaleW vanishes.

In practice, simulations have to resolve the variation
the phase fields through the interfaces, so thatW must stay
finite. Their results generally depend on the ratioW/,, where
, is a relevant length scale of the FBP. Explicit corrections
the original FBP to first order inW/, have been calculate
by a so-calledthin-interface analysis in a few cases, an
some canceled out@6–9#. A complete cancellation, achieve
for single-phase solidification@7,9#, means that results be
come independent ofW/, for some finite value ofW. The
correct FBP is then reproduced already at that value, m
larger than the thickness of real interfaces, enablingquanti-
tative contact in three dimensions between simulatio
theory, and experiments inreasonablesimulation times@10#.

Here, we extend these advances to two-phase solidi
tion, which already includes the most widespread solidifi
tion microstructures after dendrites: eutectic composi
They consist of alternate lamellae of two solids (a andb) or
of rods of one solid embedded in the other, growing from
melt L near a eutectic point, where all three phases coexis
equilibrium. The interplay between capillarity and diffusiv
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bulk transport between adjacent solid phases can give ris
more complex patterns and nonlinear phenomena suc
bifurcations, limit cycles, solitary waves, and spatiotempo
chaos@11#.

A two-phase solidification front consists of~i! solid-liquid
interfaces and~ii ! trijunction points where all three phase
meet. Our strategy is to construct a phase-field model
allows us to analyze the thin-interface behavior of~i! sepa-
rately from~ii !. We quantitatively reproduce the correct FB
on ~i!; ~ii ! satisfies Young’s law at equilibrium. We test co
vergence inW/, for lamellar eutectic growth at experimen
tally relevant parameters, and compare our results to bou
ary integral ~BI! @12# simulations and other phase-fie
models. For steady states, we achieve good agreement
the BI and a drastically improved, fast convergence co
pared to previous models. In contrast, convergence is s
for limit cycles, due to a trijunction behavior affecting th
overall dynamics.

We use one phase fieldpi to indicate presence (pi51) or
absence (pi50) of each phasei 5a,b,L in the spirit of
volume fractions@13#, which requires

pa1pb1pL51. ~1!

The phase fields evolve in time to minimize a free ene
functional F of pW [(pa ,pb ,pL), the solute concentration
and temperature,

]pi

]t
52

1

t~pW !

dF
dpi

U
pa1pb1pL51

; i , ~2!

wheret(pW ) is a phase-dependent relaxation time. This cl
sical problem of minimizing a functional subject to a co
straint is treated by the method of Lagrange multiplie
(dF/dpi)upa1pb1pL515dF/dpi2(1/3)( jdF/dpj for three
phases, where the functional derivatives on the right-h
side are now taken as if allpi were independent.

To distinguish between phases, earlier phase-field mo
of two-phase solidification used either the usual solid-liqu
phase field and the local concentration@14# or introduced a
seconda-b phase field@15#. Across a solid-liquid interface
both fields must vary, so that their dynamics are coupl
which complicates a thin-interface analysis. The same is
for a generic choice ofF in Eq. ~2!. However, if on ani -j
A
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interface we can assure that the third phase fieldpk is exactly
zero, pi or pj can be eliminated using Eq.~1!, so that the
interface can be described in terms of a single indepen
variable. This was recently achieved using a free energy w
cusplike minima@16#, but no thin-interface analysis is avai
able for that model. We also achieve absence of the t
phase, but using asmoothfree energy, by requiringpk50 to
be a stable solution forpk of Eqs.~2! for eachi -j interface:

dF
dpk

U
pa1pb1pL51, pk50

50;k, ~3a!

d2F
dpk

2 U
pa1pb1pL51, pk50

.0;k. ~3b!

The advantage is that the simplest choice forF yields a
model that turns out to coincide with the quantitative mo
of Ref. @9# on thosei -j interfaces.

To construct our free energy, we split it into parts,

F5E
V

f grad1 f TW1l̃ f c . ~4!

The first is a free energy penalty,

f grad5
W2

2 (
i

u¹W pi u2, ~5!

for the gradients of the phase fields that provides the in
face thicknessW. The next is a triple-well potential

f TW5(
i

pi
2~12pi !

2 ~6!

that generates the basic ‘‘landscape’’: one well per p
phase and ‘‘valleys’’ with double-well profiles along eac
pk50 cut, separated by a potential barrier on trijunctio
pa5pb5pL51/3. The last part has a strengthl̃ ~a constant
that controls convergence! and couples the phase fieldspi to
the temperatureT and the solute concentrationC through
c(C)[(C2CE)/DC, with DC[Cb2Ca , where Ca and
Cb are the limits of the eutectic plateau and (CE ,TE) is the
eutectic point,

f c5(
i

gi~pW !@Bi~T!2mAi~T!#, ~7!

where we have introduced the chemical-potential-like va
ablem[c2( iAi(T)hi , andgi(pW ) andhi(pW ) ~given below!
interpolate between 0 forpi50 and 1 forpi51.

The term f c drives the system out of equilibrium by un
balancing the pure phase free energies: Each welli is shifted
by an amountBi2mAi . The equilibrium valuem5meq

i j

5(Bj2Bi)/(Aj2Ai) gives equal shifts and hence restor
the balance between phasesi andj; from the definition ofm,
we obtainci

i j 5Ai1meq
i j for the concentration in phasei co-

existing with phasej. A eutectic phase diagram with consta
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concentration gaps and straight liquidus and solidus line
generated byAi5ci[c(Ci) and Bi5ci(T2TE)/(miDC),
with mi the ~signed! liquidus slopes,i 5a,b. Nonconstant
concentration gaps and peritectic phase diagrams can als
treated. Without loss of generality,AL5BL50.

In order form5meq
i j to keep the balance all across thei -j

interface aspi goes from 0 to 1, we require

gi~pi ,pj ,0!512gi~pj ,pi ,0! ; i . ~8!

Otherwise, several thin-interface corrections arise@8,9#. The
simplest choice satisfying also Eq.~3a! is gi5pi

2
„15(1

2pi)@11pi2(pk2pj )
2#1pi(9pi

225)…/4.
The evolution ofm is obtained from its definition and

mass conservation,] tc1¹W •JW50, JW52DpL¹W m1JWAT :

]m

]t
5D¹W •~pL¹W m!2(

i
Ai

]hi

]t
2¹W •JWAT , ~9!

where2DpL¹W m is the usual diffusion current, with a diffu
sivity that varies fromD in the liquid to 0 in the solid~one-
sided model!, and JWAT is an extension of the antitrappin
current introduced in Ref.@9# that counterbalances spuriou
solute trapping,

JWAT[2n̂L

W

2A2
(

i 5a,b
Ai

]pi

]t
~ n̂i•n̂L!, ~10!

wheren̂i52¹W pi /u¹W pi u are unit vectors normal toi -L inter-
faces, andn̂i•n̂L prevents solute exchange between the t
solids. The model is not variational, because of the termJWAT
and becausemÞ] f c /]c, but enables us to usehi5pi , which
allows for a coarser discretization@7#.

Our model@Eqs.~2! and~9!# has stable interface solution
connecting two coexisting phasesi and j: m5meq

i j , pi51
2pj5„16tanh@r/(WA2)#…/2 ~with r the distance to the in-
terface!, pk50. Since these solutions are identical for alli -j
pairs, so are thei -j surface tensions. Unequal surface te
sions can be obtained by adding new terms in Eq.~4! that
shift the i -j free energy barriers.

Remarkably, on solid-liquid (i -L) interfaces, assuming a
weak dependence ofAi , Bi on T, andt(pW )5t i , the change
of variablesf i5pi2pL , u5(meq

iL2m)/Ai maps Eqs.~2! and
~9! to the quantitative model with constant concentration g
in Ref. @9#, up to numerical prefactors. The thin-interfac
limit can hence be deduced by inspection and yields the c
sic FBP oni -L interfaces,

] tc5D¹2c, ~11a!

2Dn̂i•¹W c5vn~ci
iL2cL

iL !, ~11b!

c57S T2TE

umi uDC
1dik1b ivnD , ~11c!

where Eq.~11a! holds in the liquid and the others are boun
ary conditions on the interface that has normal velocityvn
2-2
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and curvaturek; the minus~plus! refers toi 5a (b), and the
capillary lengthsdi and kinetic coefficientsb i read in terms
of our model parameters as

di5a1

W

uAi ul̃
, ~12!

b i5a1F t i

uAi ul̃W
2a2

uAi uW
D G , ~13!

with a15A2/3 anda251.175. The constantl̃}W/di in Eqs.
~4!, ~12!, and ~13! controls the convergence to the origin
FBP. Any set ofb i can be treated with suitablet i . We con-
sider here ba5bb50, which is achieved with t i

5a2Ai
2l̃W2/D. The differentt i for AaÞAb ~e.g., different

concentration gaps! are interpolated byt(pW )5 t̄1(1/2)(ta

2tb)(pa2pb)/(pa1pb), t(pa1pb50)5 t̄, with t̄5(ta
1tb)/2.

We test our model in directional solidification withT
5TE1G(z2Vt), whereG.0 is the thermal gradient an
V.0 the pulling speed, both directed along thez axis. Half a
eutectic lamellae pair of total widthl is simulated in two
dimensions (x and z) with no-flux boundary conditions in
the midline of each lamella, using a finite-difference Eu
scheme with a grid spacingDx50.8W ~coarser far into the
liquid to improve efficiency!. We adoptl D /d̄551 200 and
l̄ T / l D54, where l D[D/V is the diffusion length, l T

i

[umi uDc/G are the thermal lengths, andd̄[(da1db)/2,
l̄ T[( l T

a1 l T
b)/2. These correspond to typical experimen

values G'100 K/cm, V'1 mm/s for CBr4-C2Cl6, an or-
ganic eutectic for which accurate experimental data e
@11#. We usema52mb , ca52cb ~a symmetric phase dia
gram! or mb /ma522, 2cb /ca5da /db52.5 ~one close to
CBr4-C2Cl6). In both cases,m(z→1`)50 ~eutectic com-
position!. We test convergence to the thin-interface limit wi
decreasingW by conversely increasingl/W while keeping

all the ratios above andl/lmin fixed, wherelmin}Ad̄l D is
the minimal undercooling spacing@17#. This is achieved by
varying the constantl̃ in Eq. ~12!.

Figure 1 shows the solid-liquid interfaces of a steady-s
lamellae pair calculated by different phase-field models
the boundary integral method@12# for l'lmin . For the sym-
metric phase diagram@Fig. 1~a!#, our model~thin solid lines!
agrees well with the BI~thick solid line!. Moreover, the
curves atl/W564, 92, and 128 are indistinguishable. Th
means that the results are independent ofl/W for l/W
>64, the signature of a quantitative model. In contrast, if
remove the antitrapping current in our model,JWAT50W , which
leads to solute trapping and finite interface kinetics, the
sults depend onl/W for all the range from 32~bottom
dashed line! to 128~top one!. The convergence of models no
backed by a thin-interface analysis can even be slower
shown by the dotted curves for a qualitative version of o
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model withhi5gi violating Eq.~8! andJWAT50W @18#; in this
situation, several thin-interface corrections to the FBP oc
simultaneously@8,9#.

Results are similar for the phase diagram close
CBr4-C2Cl6 @Fig. 1~b!#. The convergence is somewh
slower, since one of the lamellae is thinner and needs to
properly resolved. Some small deviation from the BI p
sists, probably due to the trijunction behavior~see below!. In
the inset, we plot the average undercooling vsl/W. This is a
less stringent test, as shown by the fact that results for
model are converged already forl/W532. However, those
for the model withJWAT50W still depend onl/W at l/W
5128, which illustrates how all corrections need to be ca
celed before quantitative results can be achieved.

Next, we increasel to '2.2lmin , close above the thresh
old l'2lmin @12# for the bifurcation from steady lamellae t
oscillatory limit cycles, a situation in which the oscillatio
amplitude is very sensitive to all parameters. Indeed, for
symmetric phase diagram andl/W564, the qualitative
model of Ref.@18# still yields lamellae, whereas the prese
model correctly produces cycles, which are shown in F
2~a!. However, the amplitude of the trijunction oscillatio
A/l, defined as its maximal displacement inx/l, strongly
depends onl/W, as shown in Fig. 2~b!. An extrapolation

FIG. 1. Steady-state lamellae pair profiles~dimensionless under
cooling vsx/l) for different models. Four curves atl/W532, 64,
96, and 128 shown per model; curves closer to the boundary i
gral: larger l/W @l/W564–128 collapse for the present mod
with the antitrapping current in~a!#. Phase diagram used:~a! sym-
metric; ~b! close to CBr4-C2Cl6. See parameters in the text. Inse
Averaged undercooling in~b! vs l/W, compared to that without the
antitrapping current.
2-3
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yields A(l/W→`)50.142l, not far from the BI resultA
50.139l, but the results are still not converged forl/W
5192, in strong contrast to the steady-state behavior. T
suggests that some correction~s! to the FBP inW/l remains
in our model. Since solid-liquid interfaces are controlled,
turn to the trijunctions.

The solid ~dashed! lines in Fig. 2~c! show a first~later!
snapshot of the interfaces close to a turning point of
trijunction trajectory. In the later one, the trijunction h
moved away and only thea-b interface remains, which ha
slightly moved sideways. In the one-sided FBP,~i! the a-b
interfacecannotmove, so it is the trace left by the trijunc
tion, and~ii ! its direction close to the trijunction approach

FIG. 2. Limit cycles.~a! Superimposed snapshots of the inte
faces at constant time intervals forl/W564. Thicker lines:a-b
interfaces.~b! Amplitude of the trijunction oscillation in units ofl
vs l/W. The line is a fit that yieldsA(l/W→`)/l50.142. ~c!
Blowup of 6.4W36.4W. Solid lines, trijunction passage; dashe
line, latera-b interface.
a

.
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that of the trijunction velocity. In a diffuse-interface mode
the diffusivity behind the trijunction point pa5pb5pL
51/3 falls to zero on the scale ofW, so that~i! and~ii ! do not
hold. We consistently observe the displacement to be a f
tion of W fairly independent ofl/W, and the whole trijunc-
tion to be slightly rotated with respect to its velocity, featur
also observed for the steady state in Fig. 1~b!. This effect
explains the remaining mismatch between the phase field
the BI in Fig. 1~b! and the slow convergence ofA/l here.

We have presented a phase-field model of two-phase
lidification that coincides with the best models to date@7,9#
on solid-liquid interfaces, whose dynamics are complet
controlled. This has allowed us to identify the role of diffu
trijunctions in the convergence of the results. Understand
their dynamics is both a fundamental issue and a prerequ
for a fully quantitative modeling of multiphase solidification
First, a thin-interface analysis of the trijunction region in t
phase-field model is lacking. Even so, our model is expec
to be precise and yield a substantial efficiency gain for sm
curvatures of trijunction trajectories, which makes it a pro
ising tool for three-dimensional simulations. Second, the f
boundary problem to converge to should also be recon
ered. It was shown elsewhere that Young’s condition on
anglesbetweeninterfaces is violated out of equilibrium fo
kinetically limited growth@19#; here, theglobal trijunction
rotation was found to be fairly independent of the interfa
thickness, so that it might persist for real nanometric int
faces. These effects should be further investigated, poss
by atomistic simulations.
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